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Synthesis of Interstage Networks of Prescribed

Gain Versus Frequency Slopes

DOUGLAS J. MELLOR, MEMBER, 1EEE, AND JOHN G. LINVILL, FELLOW, IEEE

Abstract—Since the achievable gain of transistors typically falls
off with increasing frequency, it is necessary to design interstage
networks of microwave amplifiers with a complementary character-
istic. A method is developed for the direct synthesis of interstage
networks of prescribed gain versus frequency slopes. The bandwidth
and ripple of these networks can also be precisely specified, and
parasitic elements can be incorporated into synthesized networks.
Design examples are presented, a complete computer program for the
synthesis of interstage matching networks is described, and an
octave band microwave amplifier illustrates an application of the
interstage design techniques.

I. INTRODUCTION

ECHNIQUES have long been available for the direct

synthesis of networks whose frequency response ap-
proximates a constant over a band of frequencies. In the
synthesis procedure the insertion-loss function is first
constrained to approximate a constant in equiripple or
maximally flat fashion (the APPROXIMATION step).
Onece the insertion-loss function is defined, straightforward
computational procedures are used to obtain a network
whose frequency response is precisely that of the specify-
ing insertion-loss function (the SYNTHESIS step).

In applications such as interstage design for microwave
amplifiers, networks of sloped passband performance are
needed to provide compensation for the gain roll-off of
active devices with frequency and to yield an amplifier of
overall flat transducer gain. Insertion-loss functions which
approximate a specified gain versus frequency slope are
therefore needed in the synthesis of interstage networks.
Obtaining insertion-loss funetions of prescribed gain versus
frequency slopes is called here the SLOPED APPROXI-
MATION PROBLEM, and a general solution thereto
has not been published. Ku and Petersen [1] have ob-
tained sloped insertion-loss functions for low-pass topolo-
gies using curve-fitting techniques. The resultant pass-
band ripple is unpredictable and must be reduced through
an optimization process.

Here we develop a method of deriving insertion-loss
functions with logarithmic gain versus frequency slopes
from insertion-loss functions of flat passband performance.
These insertion-loss functions exhibit exact logarithmic
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slopes for slopes which are integral multiples of 6 dB/oc-
tave (integral-sloped insertion-loss functions) and slightly
distorted slopes otherwise (nonintegral-sloped insertion-
loss functions). The slight distortion involved in the .
nonintegral-sloped insertion-loss functions is readily pre-

dictable from closed-form calculations. Using the insertion-

loss functions of sloped passband performance, one obtains
by standard synthesis techniques (the SYNTHESIS step)
a network of prescribed bandwidth, gain slope, and ripple.

The synthesis approach reduces the interstage design
problem to a straightforward computational procedure
which is rapidly and accurately performed by a computer-
aided design (CAD) program. An interactive computer
routine implements the synthesis of matchirg networks
to the user-specified passband, ripple, and desired gain
versus frequency slope and adjusts the relative gain of the
frequency response to insure inclusion of specified para-
sitic elements. The computer routine lists all available
topologies, performs impedance transformations, and uses
a transformed variable to improve numerical accuracy in
the synthesis computation of element values.

A prototype 6.5-13-GHz amplifier illustrates an appli-
cation of synthesized interstage networks for microwave
amplifiers.

II. THE INTERSTAGE DESIGN PROBLEM

A. Characteristics of the Interstage Design Problem

Typical amplifier specifications call for a good input
and output match and for an overall amplifier transducer
gain which is constant (flat) over the passhand. These
specifications determine the impedance and frequency re-
sponse characteristics of amplifier matching 1etworks as
illustrated in Fig. 1. The active devices are assumed uni-
lateral at the outset, and the input and output impedances
of these active devices are modeled in lumped-element
form such that independent design of matching networks
is possible. Thus each matching network operates between
appropriate impedances [Fig. 1(b)] and must exhibit a
flat or sloped frequency response as follows.

1) The specification for good input and output match
implies a frequency response of the input and output
matching networks that is flat over the passband [Fig.
1(d)].

2) The interstage matching networks (in general, there
may be more than one) must provide a positive-sloped
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Fig. 1. Characteristics of a typical amplifier design problem after
the unilateral and lumped-element impedance idealizations are
made. (a) Amplifier schematic. (b) Impedances. (¢) Frequency
response of transistors. (d) Frequency response of input and
output matching networks. (e) Frequency response of interstage
matching network.

gain with frequency [Fig. 1(e)] to compensate the tran-
sistors’ rolloff [Fig. 1(¢)] and give an overall flat trans-
ducer gain.

B. Solution to the I nterstage Destgn Problem:
MATCHING SYNTHESIS

The procedure described here for the synthesis of match-
ing networks of arbitrarily specified passband slope with
provision for inclusion of parasitic elements is called
MATCHING SYNTHESIS [2] and is outlined in Fig. 2.
A key part of this design procedure is the synthesis of
interstage networks with specified gain versus frequency
slopes.

III. THE SYNTHESIS OF MATCHING
NETWORKS OF SLOPED PASSBAND
RESPONSE

A. Definition of Synthesis Terms

1) Trapless Filters: Two resistors coupled by a lossless
ladder network having all transmission zeros at zero
and infinite frequency are here called trapless filters.
The insertion loss for such filters can be expressed
as follows [see Fig. 3(a) ]:

1L = Power available from Ry, E,

i

insertion loss -
power delivered to R

a4 + @w® + - - apye®™

= (1)

wZJ

N order of network = number of natural frequen-
cies of the network;
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Fig. 2. Outline of matching synthesis procedure. (a) Model device
impedances. (b) Constrain frequency response and select topology
consistent with parasitic elements. (¢) Synthesize network. (d)
Transform impedance. (e) Separate out device impedances. (f)
Transform design to transmission-line equivalent.
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(a) General definition of trapless filters. (b) Example of a
trapless filter.

Fig. 3.

J number of transmission zeros at zero frequency;
N —J number of transmission zeros at infinite fre-
quency.

The example of Fig. 3(b) serves to clarify these definitions.
The insertion loss for the network of Fig. 3(b) is

Ay + G2w? + a0t 1+ g’
- 4

IL N=3 J=2

(&)

We restrict our attention throughout this paper to the
synthesis of trapless filters as matching networks.
2) The Synthesis Process: Passive network synthesis is
a well-known procedure for obtaining networks of
prescribed frequency response {3 ]-[5]. The synthe-
sis procedure consists of two steps [Fig. 4(a) ].

a) The APPROXIMATION Step: An insertion-loss
function is first obtained which approximates a
flat passband response in equiripple or maximally
flat fashion.

b) The SYNTHESIS Step: Straightforward compu-
tational procedures yield a network as prescribed
by the insertion-loss function.
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Fig. 4.

(a) The familiar procedure of synthesizing a network of flat passband performance. (b) The sloped approxi-

mation problem is solved to yield networks of sloped passband performance.

B. The SLOPED APPROXIMATION PROBLEM

The synthesis of interstage networks requires that
insertion-loss functions of specified gain versus frequency
slope, bandwidth, and ripple be found (the SLOPED
APPROXIMATION PROBLEM) as illustrated in Fig.
4(b). Once the sloped insertion-loss function is obtained,
the familiar SYNTHESIS step yields a network having
the specified frequency response.

C. The Derivation of Integral-Sloped Insertion-Loss
Functions: Multiples of 6 dB/Octave

Insertion-loss functions approximating 6S-dB/octave
gain slope, where S is an integer, are easily obtained from
flat insertion-loss functions. The flat insertion-loss fune-
tion is first normalized to an upper cutoff frequency of
1 rad/s and then divided by «?5. This operation, shown
in Fig. 5, results in a sloped insertion loss of exactly the
same ripple and passband as the flat insertion loss, the
bounds being exact logarithmic curves of Kow25. The order
of the insertion-loss funetion remains unchanged, while
the number of transmission zeros at de (J) is increased
by S.

All that is required for the generation of an integral-
sloped insertion loss-function with N,J = Ng,J s then, is
a flat insertion-loss function with N,J = NgJs — 8. The
flat insertion-loss function becomes the desired sloped
insertion-loss function upon division by «?S.

D. The Derivation of Nonintegral-Sloped Insertion-Loss
Functions: Nonmultiples of 6 dB/Octave

Nonintegral-sloped insertion-loss functions are obtained
by a linear eombination of two insertion-loss functions

IL
dB

UPPER BOUND IL=Kg
FLAT INSERTIO! LOWER BOUND IL=1
LOSSFUNCTION
ag +...0ppw2NO
e 22N
% i)
Kg =IOR/I0
N =Ng RIN dB
J =dJdo w
Y @ ! (log scale)
DIVISION BY w28
L
a8
SLOPED INSERTION UPPER BOUND, IL.= Kges ¢
LOSS FUNCTION -
SS FUNCTION LOWER BOUND L= 425
uo+...02N°w2N°
h 2J0)(,2S
(w0 w=®) M"‘:M'glelﬁ-’f‘)
- IN: N
N =Ng - | LOSS
J=Jdo+8S | '
w
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wmiL

Fig. 5. Division by «®5 (where S is an integer) results in an exact
logarithmically sloped insertion-loss function.

having an integral slope just less than, and just greater
than, the desired slope. The resultant combination ap-
proximates the desired nonintegral slope with a slight
deviation from true logarithmic slope. The amount of
deviation is readily predictable.

We will combine integral-sloped insertion-loss functions
of S; and S: slope which have the same ripple and the
same N and J. S;'and S, are defined as follows:

S = desired nonintegral slope
Sy - INT(S) = integer just smaller than S

S; = 81 + 1 = integer just greater than S. (2)
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Since we are able only to approximately obtain the desired
nonintegral slope, we constrain the bounds of the inser-
tion loss to be exactly as desired at the passband edges
and check the resultant deviation within the passband.
We therefore seek the combining constants A; and A, of
Fig. 6 which will set the bounds of the approximation
properly at the band edges. The four conditions on A4,
and A, are as follows. The condition on the lower bound
at w = wr, 18

Ao 281 4 Agop 25 = w28, (3a)
The condition on the lower bound at «w = wy = 11s
A+ 4, = 1. (3b)
The condition on the upper bound at « = wg is
| AiKror S+ AsKpor St = Kgopr™S
Kg = 107/ R in decibels. (4a)
The condition on the upper bound at w = wy = 1 18
KrA, + Kgd; = Kk. (4b)

By inspection, (4a) and (4b) are fulfilled if (3a) and
(3b) are satisfied. The solution to (3) is

wL2(S2——S) -1

4, = A, =1— A, (5)

wr? — 1

The deviation of the resultant insertion-loss function from
true logarithmic slope is deseribed by Fig. 6 and can be
defined as follows:

bounds of actual response

deviation = -
bounds of desired response

A5t 4 A 252

—2.8

(6)

w
The frequency of maximum deviation wyp and the maxi-
mum deviation (MD), can be found by taking the
derivative of (6) with respect to w:

iy
dB|  UPPER BOUND = Kguw 251t

LOWER BOUND = w251

{ap +‘~v02NwZN)

A Kg = IOR/10
! w2s R IN dB
o w

+ “’f_ ! (log scate)

UPPER BOUND = Kges252

: = 25

A (Bo -+ baye?N) LOWER BOUND = 252
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Fig. 6. The linear combination of integra.l—sloped'insertion-loss
funetions results in a nonintegral-sloped insertion-loss function.
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E. Flat Insertion-Loss Functions Used for the Generation
of Sloped Insertion-Loss Functions

In order to afford maximum flexibility in matching
network designs, it is desirable to have the greatest pos-
sible flexibility in the choice of N and J (the order and
the number of transmission zeros at dec, respectively).
Thus flat insertion-loss functions of arbitrary N and J are
needed from which to derive sloped insertion-loss fune-
tions. We make use of Szentirmai’s insertion-loss functions
[6] of flat passband performance from which to derive
sloped insertion-loss functions. Since Szentirmai’s inser-
tion-loss functions allow

N, = arbitrary
0 <Jy <N,
Sloped insertion-loss functions are possible for

N s = arbitrary
for integer slopes
S§<Jg<Ngs

and

N s = arbitrary
for noninteger slopes.
INT(S) +1 <Js < Ng

The subscripts 0 and S refer to the flat and sloped inser-
tion-loss functions, respectively. The fact that Szentirmai’s
techniques for obtaining flat insertion-loss functions are
cast in a @-plane formulation is immaterial since all the
operations needed to obtain sloped insertion-loss func-
tions can be performed equally well in the @ plane. The
@ variable is a transformation from the familiar s variable
via the following equation:

B = wy/wr

g o (o) + B
B(s/wn)* + 1 ’ wo? = wywr
wr, = lower cutoff frequency

(8)

The use of this transformed variable for improved numer-
ical accuracy in the synthesis process is well known

(61091

F. The Adjustment for Desired Minimum Insertion Loss
of Sloped Insertion-Loss Functions

wy = upper cutoff frequency.

Since the sloped insertion-loss functions were derived
by putting a slant on appropriate flat insertion-loss fune-
tions, their minimum insertion loss (MIL) will, in general,
be nonzero (see Fig. 5). The actual MIL of both integral-
and nonintegral-sloped approximations is therefore un-
predictable and should be adjusted to a value specified by
the designer. Adjustment of the MIL to a value of 0 dB
or any other desired value requires finding the frequency
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at which the MIL occurs:

diL

—=0= WMIL (9)
de

L(wyw) = MIL. (10)

After the frequency wwmir and the corresponding MIL
have been determined, the insertion-loss function is ad-
justed to a desired MIL, MILges, by constant multiplica~
tion (MILges and MIL in decibels) :

ILges = IL X Kwuinser

Kumser = 10(MILace—MIL)/10,

(11)
(12)

G. Inclusion of Parasitic Elements

The presence of parasitic elements limits the available
gain bandwidth of a matching network [107], and this
available gain bandwidth product must not be exceeded
in the synthesis specification if inherent parasitic elements
are to be absorbed into synthesized networks. Since the
bandwidth and ripple of a design are generally fixed, the
gain of the specifying insertion-loss function is adjusted
to ensure absorption of parasitic elements!:

ILp = KIL. , (13)

This adjustment procedure is illustrated in our examples.

IV. THE SYNTHESIS OF MATCHING
NETWORKS OF SLOPED PASSBAND
PERFORMANCE: NUMERICAL
EXAMPLES

A. Introduction

Two numerical examples are given here to illustrate
how sloped insertion-loss functions can be obtained from
suitable flat insertion-loss functions, thereby enabling the
synthesis of networks of specified gain versus frequency
slope. The first example is an integral-sloped insertion-
loss function calculated in the s plane using familiar ap-
proximation techniques. The second example is a deriva-
tion of a nonintegral-sloped insertion-loss function from
#-plane insertion-loss functions of flat passband.

B. Example: Derivation of Integral-Sloped Approximation:
8 Plane

An interstage network is to operate between a 50-Q
source and a series 10-Q and 0.82-pF load. A 6-dB/octave
gain slope and 1 dB of ripple are required in a 1-2-GHz
passband.

Outline of Solution: First, a flat insertion loss (ILp) will
be derived using standard approximation techniques, then
this insertion loss will be divided by «? to obtain a sloped
insertion loss (ILs), and finally the sloped insertion loss
is multiplied by a constant to obtain an insertion loss that

1 A more complete discussion of adjusting the frequency response
specification in order to ensure inclusion of parasitic elements is
contained in {2].
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will absorb the preseribed parasitic (ILgp). From ILgp
the network will be synthesized.
Solution:

ILr = 1 4 KiCo2(Ka(w/wn — wo/w))

Cy(X) = second-order Chebyshev polynomial = 2X2 — 1.
The frequency normalization is taken such that the
upper cutoff frequency is scaled? to 1 rad/s:

1rad/s wz = 0.5 rad/s
(wpwr)Y? = 0.707 rad/s.
K, sets the relative bandwidth:
Ko (wp/wo — wn/wy) =1
~ K, = 1.414.
K, adjusts the ripple: K; = 10%! — 1 = 0.26
16.60® — 37.3w® + 30.3w* — 9.3w? 4 1.04

4 ’

wy =

Wy =

ILy =

w
(NJ = 4,2).

The flat insertion loss dbtains 6-dB/octave slope upon
division by w?:
ILg = ILp/?
_ 16.6w® — 37.30® + 30.3w* — 9.30* + 1.04

6 Y

[5)

(N,J = 4,3)
ILsp = K Lg.

The value of K? = 1.26 is sufficient to ensure absorption

of the specified parasitic

20.9¢° — 46.90° + 38.1wf — 11.70" + 1.3
ILgp = .

b

The network synthesized from this insertion loss after
impedance transformation [11] and scaling to 2-GHz
upper cutoff is shown in Fig. 7 along with the plotted
response of the network (ILgp). ILr and ILs are plotted
also for comparison.

C. Ezample: Derivation of Nonintegral-Sloped
Insertion-Loss Functions: @ Plane

An interstage is to be designed to operate between a
200-2 source and a 10-2 load with 0.5 dB of ripple and
4-dB/octave slope in a 1-2-GHz passband. Minimoum
insertion loss is required.

Outline of Solution: A flat insertion-loss function (L)
will be obtained and divided by «? to obtain a 6-dB/octave
insertion-loss function (ILgs). This 6-dB/octave insertion-
loss function will be linearly combined with yet another
flat insertion-loss function (ILgy) to obtain sn insertion-
loss function with 4-dB/octave slope (ILgs). Finally, the

2 All numerical results are shown here with less accuracy than
would be necessary for accurate computations.
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ILgs = ILge/w?
D112 — 4.30° + 25.40¢ — 9.60° + 4.508
Mo = (=650 + 156" — 14° + 40%) (2 — ¢*)
s 20202 — 1)
1.12 — 4.30% + 25.40¢ — 9.60¢ + 4.50°
JTLge =

1 — 53 + 8.25¢* — 5¢° + @° ’
(NJ = 4.2).

Now a flat insertion-loss function with N =4, J = 2,
and 0.5-dB ripple is obtained:

1.12 — 3.40° + 13.60* — 3.40° + 1.12¢°

1 1 | T ') 1 ,f
ized — 0.5 1
Wnormalized rad7eac rad/sec {log scate)
1, P
actual GHz Ghiz
1.58pF 486nH 69nH 0.82pF
| g
50 7.6nH 210

Fig. 7. A matching network of 6-dB/octave slope synthesized
from ILgp.

4-dB/octave insertion-loss function is adjusted for mini-
mum insertion loss by constant multiplication. The ad-
justed insertion loss is ILge. From ILgis the network is
synthesized. In equation form:

IL g + w? = IL.g
flat 6 dB/octave
NJ = 4,1 NJ = 4,2
AdLg + AoITige = IL gy ,
flat 6 dB/octave 4 dB/octave
N,J = 4.2 NJ =42 NJ =42
ILs. X Kuiser = TL g4
4 dB/octave 4 dB/octave
NJ =42 NJ =42

Solution: For all insertion-loss furictions in the @-plane
formulation, the following frequency normalization is
used:

Wy = 1 Wy, = 05 Wy = ywy = 0707
B = wy/wn = 2.
Szentirmai’s @-plane approximation techniques [67] are
used to generate a flat insertion-loss function to the fol-
lowing specifications: 0.5-dB ripple, N = 4,J = 1
1.12 — 4.30% - 25.40* — 9.60° + 4.50°
1 — 6.502 + 1504 — 14¢° 4 498

(NJ = 4,1).

ILgo = -

A 6-dB/octave slope is introduced upon division by «?,
where »?in the @ plane can be obtained by rearranging (8):

w(B—) (2=
(BF—1) 202 — 1)

W = —g =

ILpe =

1 — 502 + 8.250* — 5@° + @# ’
(NJ = 4,2).

ILgo (zero slope) and ILges (6-dB/octave slope) are now
combined to obtain 4-dB/octave slope:

ILss = AilLpo + A2lLige

Equation (5) gives

A =049 wr = 0.5
fOI‘ Sz =1 Sl =0
4, = 0.51 S = 2/3

112 — 3.80* + 19.6@* — 6.60° — 2.8¢°
1 — 507 4 8.250% — 50° + @5 ]

(NJ = 42).

ILg =

TFig. 8 displays the frequency response of ILgs. The fre-
quency of MD and the MD (maximum departure from
4-dB/octave slope) are obtained via (6) and (7):

wup = 0.725 MD = 0.2 dB.

Tsq

< IDEAL 4B/ |
N OCTAVE LIMITS

ACTUAL LIM-
ITS OF AP~ _|
X PROXIMATION
\\
ANy
N\ Y

0.24dB

» \
MD=0.2 dB{ \

L AN g
\ )
\) \\
1= N —
\Y
L N\
Mi=0.3d8{ "\
1 1 1 i L1 Ittt
0.5 s
0.725 0.95
“mp Ymi

Fig. 8. The frequency response of the 4-dB/octave insertion-loss

function.
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The freéquency of MIL and the MIL are computed for
ILss

dIL .
—df = 0= Bur? = —0.0683
i = 095 MIL = 0.3 dB.

ILgsis adJusted for maximum gam by constant multlph—
cation

ligia = KMILSET X ILsq
100310 = (0,933

105 = 3.60° + 18,30 — 6.10° + 2.60°
1 — 50 + 8.250* — 50° + ¢°

(NJ = 42).

KMILSET

TLgws =

IL g4 is plotted in Fig. 9. The matchingvnetwork obtained
from TLg44 using @-plane syrithesis after frequency sca]ing
and impedance transformation [117 is also shown in
Fig. 9.

V CAD IMPLEMENTATION OF MATCHING
SYNTHESIS

The rapid and accurate des;gn of matching networks
by synthesis methods is best accomplished by an inter-
active CAD prograrm. The ‘computer-aided implementa-
tion of MATCHING SYNTHESIS [2] represents a
unique total package for synthesis of matchmg networks
including the followmg

1) syntheSIS of networks of prescnbed rlpple, band-
width, and gain versus frequency slope;

2) adjustment of the frequency response to assure in-
clusion of parasitic elements into synthesized networks;

3) generation of all allowable topologies for a given
synthesis specification;

L w,f
@normalized~0:5 ({log sl:ale) :
factuat — 1 GHz - 2 GHz i
3.28nH 0.51nH 10.2pF -
— . \
| 1.87 1 1.61
200 T pF nH 0

Fig. 9. The 4-dB/octave sloped insertion-loss function is adjusted
for maximum gdin and a network is synthesmed from ILgsa.

- Gain versus frequency slope:
MIL:

1019

~ 4) time-shared synthesis capability up to twelfth order
utilizing @-plane synthesis;

5) automated implementation of lmpedance transfor-
mations, :

VI. AMPLIFIER PROTOTYPE
The matching networks for a prototype amplifier cover-
ing 6.5-13 GHz were designed using the interatage design
methods of this } paper. A block diagram and a photograph

of the amphﬁer using the HP GaAs FET [12], [13]
is shown in Fig. 10. The characteristics of the individual

blocks of the amplifier are as follows.

’ ﬁP Gads FET Characteristies

Max1mum available gain (G.,m,) 14.75 dB at 6. 5 GHz
8 62 dB at 13 GHz,

Input impedance: modeled as a series B—C network
Output impedance: modeled as a shunt R~C network

Approxxmate
6-dB /octave
rolloff

Input Matchmg—Network Cha,ractenstws

6 dB/octave
0.0 dB

Response:

maximally flat
Curvature:

over 6.5~13 GHz
0.3 dB :

Output Matching-Network Characteristics

Gain versus frequency slope: 0.0 dB/octave (flat)) ,
%els{;:)nse; 0.0 dB over 6.5—13 GHz

) equiripple
Ripple: ) 0.7 dB

The measured small-signal performance cof this thin-
film amplifier is shown in Fig. 11. The ideal gain curve is
that predicted for the amplifier based on & unilateral
assumptlon for the FET (8w = 0) and s1mp1e 1umped—
element models of the FET input and output impedances
as well as for the matching networks. The close agreement
between the ideal and measured response verifies that
octave band microwave amplifiers are readily des1gned
using synthesized matching networks.

Because of the mismatch at the input, the amplifier is

LOSSLESS| - SSLESS|

INPUT A QUTPUT.

MATCHING MATCHING

NETWORK NE TWORK
HP

GaAs FET

ATE BIAS —— 143
GATE BIAS ./~ DRAIN EiaS

RF IN

RF OUT

FET

Block diagram and photograph of prototype 6.5-13-GHz

Fig. 10.
. amplifier.
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Fig. 11. Measured response of a prototype 6.5-13-GHz amplifier.

not suited for direct cascading with other amplifiers or
other system building blocks, but is an excellent unit
amplifier for hybrid-coupled [147] or ecirculator-coupled
systems.

VII. CONCLUSION

The powerful tool of passive network synthesis has
been generalized to include the synthesis of networks with
arbitrary gain versus frequency slopes and to allow the
inclusion of parasitic elements into synthesized networks.
With this generalization, interstage networks for micro-
wave amplifiers can be readily designed using straight-
forward synthesis methods. Since the synthesis process is
a step-by-step computational procedure, it is readily
amenable to CAD programming. From a user-specified
bandwidth, gain versus frequency slope, and ripple, a
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CAD program provides the configurations and element
values of the matching networks and implements imped-
ance transformations necessary for proper termination.
Thus interstage design is accomplished rapidly and accu-
rately through direct synthesis methods.
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